Here is a workbench that is quick and easy to construct, professional looking and absolutely rigid.

Designing the Workbench

The workbench mainly consists of four legs and four stretchers held together with eight identical joints. The joints are easy to cut yet forgiving because they are fastened with common hex-head bolts available at any hardware store.

The joint, equally effective in hardwood or cheap construction-grade lumber, is also perfect for many types of knockdown furniture. It’s even solid enough for permanent installations, such as a built-in work counter.

The first step in building the frame is to decide the dimensions of the top. This decision should be based on the bench’s intended use (a carving bench should have a narrower top than a cabinetmaker’s assembly bench) and on the shop space you have available. The bench built has a 42-in.-wide by 72-in.-long top, good for general woodworking tasks. From these dimensions, the size of the frame and the length of the stretchers was calculated. You can determine the length of each pair of stretchers by subtracting twice the thickness of a leg plus the amount the top will overhang at each end from the length and width of the bench top.

When deciding on the amount of overhang, keep in mind that it’s a good idea to leave plenty of room on all sides, for mounting vises and for clamping things to the top. For example, this bench has a 7-in. overhang and 3-in.-thick by 3-in.-wide legs were used, so the end stretchers were 22 in. long and the side stretchers were 52 in. long. The stretchers here are from 2×6 stock.

Soft maple was used for on the bench’s legs, but you can use glued-up hardwood or construction-grade 4x4s. Cut the legs to a length that equals die height of the bench less the thickness of the top. Bench height is largely a matter of personal taste. A 34-in.-high bench is kinda the norm for folks sawing or planing wood; for small assembly work, though, if you are tall, the bench top could be an inch or two higher.


 

Making the stretcher joints

The function of a stretcher is to prevent the frame from racking and the bench from rocking, so it’s imperative that each stretcher connection be rock solid. A joint held together with a single bolt focuses pressure at the center of the joint, which doesn’t adequately prevent the joint from racking. Two bolts are better because they pull the stretcher against the leg closer to the edges, thus keeping the joint square. But you need to buy twice as much hardware, plus it takes twice as long to knock down or assemble the bench. After trying several variations of the bolted stretcher joint, the version shown in the drawing seems to work the best. A single bolt is used for each joint, and an arched relief area is cut out on each end of the stretcher. As the joint is tightened, pressure is focused at the outer edges (like a two-bolt joint), effectively locking the stretcher square to the leg and preventing racking.

To begin making the joints, crosscut the stretchers square and to length, and drill cross holes to provide the space for the nut and washers that are fitted to the end of each bolt.

The center of each cross hole is located where the bolt end will be when the joint is assembled. For my bench, I used 3-in.-sq. legs and 6-1/2-in.-long bolts with the heads countersunk 1/2- in. deep. This places the center of my cross holes at 3-1/2-in. from the end of each stretcher. You should avoid locating the cross holes any closer to the stretcher ends than that or you risk the force of the bolt splitting out the end grain and ruining the stretcher.

Bore out the cross holes with a 1-1/4-in -dia. bit, which will leave a hole large enough to allow a box wrench to fit around the nut during assembly. Next, the portion of the hole facing the end of the stretcher is squared up for the nut. A tri square was used to mark out the pocket, as shown in the drawing. Then the waste was chopped out with a chisel. If you like, you can whittle or sand the edges of the opening to give them an attractive chamfer.

To locate the bolt holes in the ends of the stretchers, a thin-plywood (you could use cardboard) template was cut to the same dimensions as the cross section of a stretcher, in this case about 1-1/2-in. by 5-1/2-in. The template is used to mark the center for each 3/8-in.-dia. bolt hole, and then these holes are drilled through until they intersect with the cross holes. A spade bit in a portable electric drill works fine in end grain, although I prefer to use a modified auger bit in a hand brace. To modify the bit, I just filed the spurs off, and it chewed right through end grain. I tried to drill accurately by checking that the bit was parallel to the face and edge of the stretcher, and stopping and rechecking frequently. Because the hole is much larger than the bolt, dead accuracy isn’t necessary; as I’ve said, this joint is very forgiving.

If you plan to disassemble and assemble the bench often, you might want to add an alignment dowel on the end of each stretch-er. This short, 1/2-in.-dia. dowel keeps the stretcher aligned during assembly and mates to a slightly oversized hole in the leg.

Next, mark and cut out the relief area on each stretcher end, leaving two l-in.-long contact areas. A 1/4-in.-deep relief is all you need, but if you’d like to add a decorative touch, you can cut a fancy shape; just avoid cutting too near the cross hole or you’ll risk splitting the joint when you tighten the bolt. I cut out the relief area on a band saw, but you could use a saber saw or chop out the waste by hand with a chisel.

Use the same template described above to mark the positions of the bolt holes on the legs. Each pair of legs is laid out differently, so be sure to mark carefully. If you choose to countersink the bolt heads, drill the countersunk holes first. A 1-in.-dia. hole matches the diameter of washers normally used with 3/8-in. bolts. Drill the bolt holes oversized – 5/8-in. holes for the 3/8-in. bolts-as you did on the stretcher ends earlier.

Assemble the bench frame by first bolting together the legs and end stretchers, and then joining them with the side stretchers. The joints will seem loose and sloppy when first assembled; simply position and tighten them using two washers under each nut. You might need to re-tighten the joints after they’ve settled for a few days.

Fitting the bench top

For this bench top, some 1-1/2-in.-thick maple was glued up (stuff lying around). An easier (although more expensive) alternative is to buy a length of ready-made butcher-block counter top, available from many building-supply stores, home centers and lumber dealers. I’ve built other general purpose bench tops by laminating sheets of MDF and topping (contact cement) with 1/8″ hardboard – something to consider. Bolt the top to the frame through a batten glued to the inside faces of the end stretchers (see the drawing). Bore three 3/8-in. holes in each batten, and then fasten the top with 3/8-in. lag bolts and washers. While the battens keep the top flat, the oversized holes allow the solid-wood top to move with changes in humidity. If you want to add a shelf under your workbench, screw battens to the underside of some 3/4-in.-thick shelf boards; then drop the shelf in place, as shown.

Accessorize!

OK, the bench is finished. Now to work efficiently, you’ll need to add a thing or two. No workbench should be without a woodworker’s vise or a set of bench dogs.

Information for this article is sourced by permission of  Woodcraft.